Diffusion behaviour of the acetaldehyde scavenger 2-aminobenzamide in polyethylene terephthalate for beverage bottles

Roland Franz, Margit Gmeiner, Anita Gruner, Diana Kemmer, Frank Welle

Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany

Introduction

Polyethylene terephthalate (PET) is widely used as packaging material for natural mineral water bottles. However, trace levels of acetaldehyde, a PET related substance, can migrate into the water during the shelf life time and might influence the taste of the PET bottled water. 2-Aminobenzamide is typically used during PET bottle production as a scavenging agent for acetaldehyde.

The aim of this study was the determination of the migration kinetics of 2-aminobenzamide into natural mineral water as well as into 20% ethanol. From the migration kinetics, the diffusion coefficients of 2-aminobenzamide in PET should be derived.

Method

PET bottles were spiked with 2-aminobenzamide in a concentration of 198±3 mg/kg. The doped PET bottles were filled with carbonated mineral water and 20% ethanol. Subsequently the bottles were stored at 23 °C and 40 °C, respectively. In regular terms up to 60 d (23 °C) and 40 d (40 °C) three bottles of each kinetic point were drawn. After storage aliquots of the carbonated mineral water were analysed towards their 2-aminobenzamide concentration by use of HPLC/MS. Column: Synergi polar RP 150x3 mm. Eluent A: 0.5% Formic acid (aqueous), Eluent B: Methanol, flow: 0.6 ml/min. Injection volume: 5 μ l, column oven temperature: 45 °C. lon source APCI positive, SRM, parent ion 137 Dalton, daughter ion 120 Dalton.

Results

The experimental kinetic migration data show a linear correlation between the migration and the square root of time, which is expected from diffusion theory (Figure 1). Therefore, it can be concluded that the migration of 2-aminobenzamide follows Fickian laws of diffusion in the performed experiments. From the migration kinetics, the diffusion coefficients of 2-aminobenzamide in PET at 23 °C and 40 °C were determined to be 4.2 10⁻¹⁶ cm²/s and 4.2 10⁻¹⁵ cm²/s, respectively. The diffusion coefficient for 20% ethanol at 40 °C was determined to be $7.7\,\,10^{-15}$ cm²/s, which indicates that 20% ethanol is causing some swelling of the PET polymer at 40 °C (Figure 1). From a comparison of migration values between 23 °C and 40 °C, acceleration factors of 9.7 for water as contact medium and 18.1 for 20% ethanol as simulant can be derived for definition of appropriate accelerated test conditions at 40 °C corresponding to storage at 23 °C. The European Union regulatory acceleration testing based on 80 kJ/mol as conservative activation energy overestimates the experimentally determined acceleration rates by only a factor of 1.6 and 3.1, respectively.

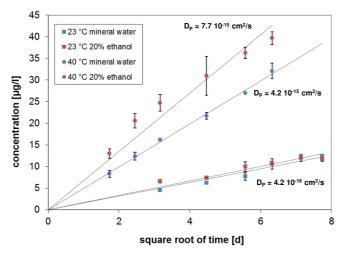


Figure 1: Migration kinetic of 2-aminobenzamide in mineral water and 20% ethanol at 23 °C and 40 °C (bottle wall concentration 198 ±3 mg/kg)

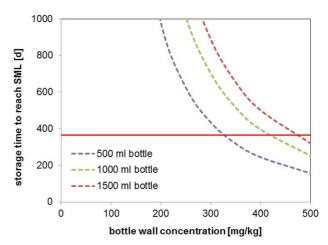


Figure 2: Storage time to reach the SML at 23 °C as a function of the 2-aminobenzamide bottle wall concentration (calculated with $D_p=4.2\ 10^{-16}\ cm^2/s$, partition coefficient K = 1, bottle wall thickness I = 300 μm), red line 365 d.

The determined diffusion coefficients can be used for the prediction of the migration of 2-aminobenzamide in water and EU food simulant C as well as for foods which do not cause swelling effects in the PET polymer. The predicted migration into mineral water at 23 °C into 500 ml, 1000 ml and 1500 ml bottles is shown in Figure 2. From such correlations the maximum bottle wall concentration for 2-aminobenzamide for a given storage time (e.g. 365 d) can be derived. For example, the specific migration limit (SML) of 2-aminobenzamide of 50 μ g/l in a 500 ml PET bottle at 23 °C with a bottle wall concentration of 200 mg/kg is reached after 975 d of storage. Under the same conditions the SML is reached after 165 d if the bottle wall concentration is 500 mg/kg. The bottle wall concentration can be therefore used as routine control parameter during PET bottle manufacturing.

Conclusions

The experimentally derived diffusion coefficients obtained with water can be used to calculate migration of 2-aminobenzamide into PET-bottled water under any realistic long-term storage conditions. Therefore a fast and economic way of compliance testing can be performed based on (i) measurement of the free 2-aminobenzamide concentration in the bottle wall and (ii) calculation of the migration for room temperature (or similar) for any long-term storage. In this way, the bottle wall concentration of 2-aminobenzamide can be taken as an easily measurable compliance check parameter against the EU legal SML value of 50 $\mu g/l$ for 2-aminoanthranilamide.

Acknowledgements

Thanks are due to Colormatrix Ltd. (Knowsley, Merseyside, United Kingdom) for financial support of this study.

References

[1] R. Franz, M. Gmeiner, A. Gruner, D. Kemmer, F. Welle. Diffusion behaviour of the acetaldehyde scavenger 2-aminobenzamide in polyethylene terephthalate for beverage bottles. Food Additives and Contaminants 2016, 33(2), 364-372.

Contact person: Dr. Roland Franz Phone: +49 (0) 81 61 / 491-700 franz@iyy fraunhofer.de

