Investigation into the migration potential of colloidal silica from food packaging plastics into food

Johannes Bott, Angela Störmer, Roland Franz

Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany

Introduction

Synthetic amorphous silica (SAS) is used as a polymer additive in food packaging. Typically SAS structures consist of primary particles in the 1-100 nm size range wherefore SAS is a nanomaterial and needs to be subjected to risk assessments. For this, special analytical techniques for the detection, characterisation and quantification of nanomaterials are required. In this study asymmetric flow field-flow fractionation (AF4) and multi-angle laser light scattering (MALLS) were used to investigate into the migration potential of colloidal silica particles out of a low density polyethylene (LDPE) film.

Materials and Methods

Colloidal silica with particles of 20 nm in diameter was provided in form of a LDPE-nanocomposite film (9000 mg/kg silica, 30 µm thickness) and as a stock dispersion with a content of 30 % silica. The stock dispersion was diluted using an aqueous 500 mg/l sodium dodecyl sulphate (SDS) surfactant solution. Diluted dispersions were used for AF4/MALLS pretests which covered:

- separation of silica particles from other matrix components
- quantification of silica particles by the correlation of light scattering intensities with the injected mass of particles.
- · Determination of stability of silica particles when stored under migration test conditions

Cutouts of the nanocomposite (1 dm²) were stored for 10 d at 60 °C in the 500 mg/l SDS solution, which was used as an alternative food simulant. The simulant was then analysed by AF4/MALLS on the presence of colloidal silica particles.

Results

Pretests

- Fractionation of colloidal silica particles was possible with specific elution times from t = 43 - 52 min
- Measurement of a standard series of diluted silica dispersions showed that the light scattering signal can be correlated with the injected mass (Figure 1). A dispersion with 75 ng/ml silica still delivered an evaluable signal.
- · Colloidal silica particles dispersed in the surfactant solution remained stable when stored for 10 d at 60 °C. At the end of storage 87,5 % of the original silica content could be recovered as particles
- The SDS solution (blank) itself did not cause any interfering signals in the AF4 fractogram. Therefore, 500 mg/l SDS solution can be considered as a suitable alternative food simulant regarding the potential to disperse migrated colloidal silica particles.

Migration measurements

15-17 September 2015, Erding

- LDPE blanks and SAS-nanocomposites caused identical signals at the end of the fractogram, which might be caused by extracted oligomers.
- AF4 fractograms of migration samples did not show any signal at elution times relevant for colloidal silica.
- Fortification of migration samples to 250 ng/ml silica showed that separation and detection of the particles would have been possible (Figure 2).

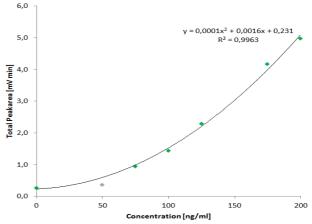


Figure 1: Sum of all MALLS detector outputs (i.e. total peak area) of the colloidal silica peaks versus the concentration.

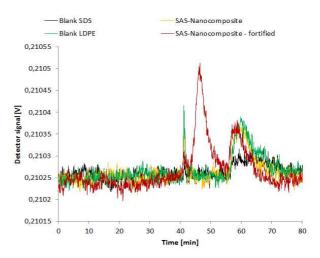


Figure 2: AF4 fractograms of migration samples stored for 10 d at 60 °C in a 500 mg/l SDS solution

Conclusion

- The AF4/MALLS method was successful in separation and detection of colloidal SAS particles
- With LDPE as a polymer matrix and silica particles with 20 nm in diameter only, the setup of this migration experiment can be considered as a worst-case regarding the potential of silica particles to migrate out of the polymer into food.
- At a detection limit of 0,1 mg silica per kg food (simulant) no migration of colloidal silica was detected.
- · From the findings it can be concluded that nano-particulate SAS in general would not migrate into food when it is incorporated into a polymer matrix.

Contact person: Johannes Bott Phone: +49 (0) 81 61 / 491-753 Johannes.bott@ivv.fraunhofer.de

