Migresives - Parameters for mathematical modelling of substances from adhesives - A_P and τ values for calculation of diffusion coefficients in adhesives

Angela Störmer¹, Peter Mercea²

- ¹ Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauser Straße 35, 85354 Freising, Germany, email: angela.stoermer@ivv.fraunhofer.de, phone: ++49 8161 491 720
- ² Fabes Forschungs-GmbH, Schragenhofstraße 35, 80992 München, Germany

Introduction

The EU project MIGRESIVES (COLL-CT-2006-030309, 2007-2010) had the intention to develop a pragmatic, science based test concept to ensure the safety-in-use of adhesives used in food contact materials. Adhesives formulations are often very complex and contain numerous single components. In order to reduce or optimise the analytical expenses for migration testing, a main objective of the project was to establish the parameters for mathematical modelling of adhesive substances in multilayer materials. Partition and diffusion coefficients are the main parameters needed for the prediction of migration via mathematical modelling. From a set of experimentally obtained diffusion coefficients, a prediction was established to estimate the diffusion coefficients of additional substances in rubber, vinylic and acrylic type adhesives as well as in plastics, paper and board as substrates according to the estimate of diffusion coefficients for plastic materials via $A_{\rm P}$ and τ values.

Material and methods

For the study 23 representative test systems (substrate/adhesive/substrate) had been defined and selected by the consortium as typical for adhesives formulations, materials and structures used for food contact materials. Using these test systems systematic migration studies were performed as kinetic and concentration profile experiments using additives and also non-intentionally-added substances as target analytes.

The data from migration kinetic and concentration profile experiments were evaluated by mathematical modelling using Migratest Exp software by fitting the modelled curve to the experimental data. The equation for estimation of diffusion coefficients as proposed in the EU guideline on migration modelling (EU Report EUR 24514 EN 2010) correlates the diffusion coefficient with the molecular weight of the migrant, the temperature and the specific diffusion properties of a polymer expressed as "diffusion conductance" parameter $A_{\rm p}'$ and the activation energy parameter τ (tau) which describes the temperature dependency of the $A_{\rm p}$ value. All experimentally derived diffusion coefficients were then expressed as temperature independent $A_{\rm p}'$ and τ values (Equation 1 and 2). Such the diffusion coefficients were normalized on molecular weight of the migrant and the temperature for better comparison.

Table 1: Adhesive test systems for comprehensive studies within WP 2

Test Raw material system polymer		Description of system	Substrate 1	Substrate 2	End application	
Natural Rubber 1	Natural rubber/solvent based/ non-reactive with PUR primer	pressure senstive coating	plastic film	paper	psa tape for closings of folding boxes	
Natural Rubber 2	Natural rubber/water- based/ non-reactive	cold seal, system without any fillers	BoPP film	BoPP film	tubular bag	
Synthetic Rubber 1	Synth. Rubber/100 % system/non-reactive	SEBS or SIS polymers, plasticised with mineral oil	paper	plastic film	bag with plastic window	
Synthetic Rubber 2	Synth. Rubber/water- based/ non-reactive	SBR emulsion, wet and dry applications	metalised film	cardboard	trays	
Aoryl 1	Acrylic/water based/ non-reactive	erbased/ wet lamination paper opp film		bread bags with windows		
Acryl 2	Acrylic/water based/ non-reactive	film print lamination paper opp film		opp film	folding boxes and tray forfood	
Acryl 3	Acrylic/water based/ non-reactive	pure acrylate	label material:	e.g. cling film	psa paper labels	
Acryl 4	Acrylic/uater-based/ non-reactive	pressure sensitive coating	plastic film	paper	psa tape for folding boxes	
EVA 1	EVA/100 % system	injection hot melt	cardboard	(Laminated Opp) cardboard	folding box	
VAE 1	VAE/water-based/ non- reactive	VAE plastisized with Triacetin:	cardboard	cardboard	folding box	
VAE 2	VAE/water-based/ non- reactive	VAE different plasiticizer than TA	cardboard plastic window		folding box	
VAE 3	VAE/water-based/ non- reactive	VAE , plasticiser, antifoam agent, biocide, water	cardboard	cardboard	folding box	
VAE 4	VAE/water-based/ non- reactive	ter-based/ non- VAE plastisized with Triacetin paper		paper, coated paper	paper bags: side seam	
VAE 5	VAE/water-based/ non- reactive	VAE plastisized with Benzoflex	paper	paper, coated paper	paper bags: side seam	
PO 1	polyolefines/ 100 % system/hon-reactive hot melt	hot melt system	paper	OPP film or polyolefin film	general use	
PVAC 1	PVAc/water-based/	PVAc plasticized	cardboard	cardboard	folding boxes side	

Equation 1: $D_P = D_0 \exp\left(A_P - 0.135M_W^{2/3} + 0.003M_w - \frac{10454}{T}\right)$

With: D_P diffusion coefficient [cm² s⁻¹] in the polymer layer P, $D_0 = 10^4$ cm² s⁻¹, MW molecular weight of the migrating substance [g mol⁻¹], T temperature [K].

Equation 2:
$$A_P = A'_P - \frac{\tau}{\tau}$$
 Equation 3: $E_A = (10454 + \tau) \cdot R$

With: A_P polymer specific "diffusion conductance" parameter, A_P ' temperature independent diffusion conductance, τ activation energy parameter, T temperature [K]. Correlation of activation energy E_A [J mol⁻¹] and τ : R gas constant (8.314 J mol⁻¹K⁻¹).

In the same manner as done for the plastic materials (Begley, Castle et al. 2005) the "upper-bound" diffusion parameters AP'* and τ^* were calculated (see Table 2 and 3) by using the 95 % confidence upper limit of the student t distribution of the experimentally derived values. In case of AP the higher value, in case of τ^* the lower value represents the more conservative estimate. The upperbound values are marked with an asterix. From the τ^* values the activation energy was calculated .

Results and Conclusions

Table 2: "Upper bound" parameters for the estimation of diffusion coefficients in adhesives

Adhesive-Group	A _P ' value	SD (A _p ' value)	upper- bound A _P '* value	۲	SD (τ)	upper- bound τ* value	n	student t (0,05, n-1, single sided)	Activation energy [kJ/mol]
Natural Rubber	10	0,1	10,3	-313	13	-351	3	2,920	
Synthetic Rubber	10,7	0,3	11,2	-376	23	-416	17	1,746	
Natural and Synthetic Rubber	10,6	0,4	11,3	-366	32	-421	20	1,729	83
EVA	6,3	0,2	6,6	-1154	48	-1236	27	1,706	
VAE	4,7	0,8	6,1	-1090	48	-1172	26	1,708	
PVAC	4	0,1	4,2	-1056	24	-1112	4	2,353	
Vinylics (all)			6,6	-1118	91	-1270	57	1,674	76
Acryl-Dispersion	3,3	0,7	4,5	191	64	83	39	1,690	88
Acryl-PSA1	3,5	0,2	to be	492	56	to be	6	2,015	
Acryl-PSA2	8,9	0,3	determined individually	-188	32	determined individually	4	2,353	

Table 3: "Upper bound" parameters for the estimation of diffusion coefficients in substrates

Substrate-Group	A _P ' (mean)	SD (A _P ' value)	upper- bound A _p '* value	τ (mean)	SD (T)	upper- bound τ* value	n	student t (0,05, n-1, single sided)	Activation energy [kJ/mol]
Paper (from the test systems)	5,6	0,6	6,6	-1018	526	-1902	49	1,68	71
Cardboard (polar esters + BDGA)	3,0	0,6	4,0	-1247	85	-1391	33	1,70	74
Cardboard (hydrocarbons)	6,5	0,5	7,4	-1387	112	-1578	27	1,71	74
Cardboard (all)				-1310	120	-1511	60	1,67	74
PVC plast.	10,2	0,9	12,8	460	187	-86	3	2,92	
OPP	9,9	1,1	11,8	1595	40	1527	25	1,71	
LDPE	9,8	0,5	10,8	-77	47	-172	6	2,02	

The obtained "upper bound" diffusion parameters $A_{p}'^{*}$ and τ^{*} can be used for estimation of diffusion coefficients in natural and synthetic rubber, vinylic (EVA, VAE, PVAC) type and acrylic dispersion adhesives. Furthermore for diffusion modelling in paper and paperboard apparent $A_{p}'^{*}$ and τ^{*} values could be obtained from the net overall mass diffusion through the layers. The $A_{p}'^{*}$ and τ^{*} values obtained for the plastic substrate layers fit to those in the EU modelling guide (PVC plast, 30% plasticiser $A_{p}'^{*}$ 14.6, τ^{*} 0; OPP $A_{p}'^{*}$ 13.1, τ^{*} 1577; LDPE $A_{p}'^{*}$ 11.5, τ^{*} 0). For verification the predicted migration values using these parameters were compared to experimental ones from 45 market samples and showed compliance or overestimation in 97% of cases (Aznar, M., P. Vera, et al. (2011): Journal of Materials Chemistry **21**(12): 4358-4370).

Acknowledgements

This project was funded by the EU-Project MIGRESIVES, Research Programme on Migration of Adhesives in Food Packaging Materials in Support of European Legislation and Standardisation, COLL-CT-2006-030309, 2007-2010). The findings and conclusions in this paper are the responsibility of the authors alone and should not be taken to represent the opinion of the European Commission.

